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What is concentric gravity wave (CGW)?
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> CGW morphology looks
like a group of concentric
rings

> Tropical cyclone tends to
generate two types of
concentric rings

> The larger wavelength one
is discernable by AIRS
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Motivation 1: concentric ring waves are important to the
upper atmosphere

AIRS Cloud radlance

Aqua satellite
(altitude = 705 km)
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Concentric rings can even impact the GPS signals

Aftermath of 2013 Moore Tornado

GPS, Total Electron Content, ionosphere
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Motivation 2: except topography, what else causes the
belt of GW activities in the Southern ocean?

AIRS GW map, July 2005
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Outline

> Ring Detection Algorithm
> First CGW climatology from AIRS obs.

> ECMWEF resolved CGW climatology and
comparison with AIRS obs.

> Conclusions and future works



AIRS (Atmospheric Infrared Sounder) on NASA Aqua
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AIRS Radiance Perturbations

FOV#90
#2

FOV

> Gravity wave variance (05°) can be derived from the AIRS
radiance perturbations

» For this study, we only remove the limb brightening effect to keep all
kinds of GWs as many as possible.



Method to identify a ring on an AIRS image

Sine Wave Plane Wave

(a) Sin Wave (c) Plane Wave
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> L-shape 2-D FFT spectrum is the key



; Original Wavelet
In each ascending or descending scene spectrum

orbit, using wavelet transform to
identify several major wave events;

If two scenes are separated by 2
degrees in latitude, we consider
them as two independent event;
otherwise, one event. Buffer zones
are add at two meridional sides;

The scene is then interpolated to
mesh grids in both directions;

Decompose the image by 2D Fourier
transformation. If an L-shape
feature is identified, the along-track
and across-track wavelength
combinations are used to re-
construct the ring;
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Patrol the ring center to TR
each grid to find the .
largest positive

correlation with the & |8
original scene; If the %
maximum correlation =
passes certain threshold, o=tk O fur] s e
a concentric ring event 1s

confirmed;
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> Some times, the ring could be spurious if the wave
curvature is not so apparent...

Spurious ring center k]
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Now, here comes the exciting part
— rings propagate toward the jets, in both hemispheres,
in day time!

Ring, 2010.07, Asc 2> hPa
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> The zonal components slow down the jets
> The meridional components propagate into the jets



In nighttime, inward meridional preference disappear

Ring, 2010.07, Des Phase [deq]
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> Rings are not only present above deep convections, but also above
polar-night jet

> Strong diurnal variation in meridional propagation direction, wave
generation location and occurring frequency (not considered in GCMs).



Ring, 2010.01, Asc
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Ray-tracing experiment in
Japan High-resolution GCM
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Comparison between AIRS and
ECMWEF resolved concentric rings

> ECMWFEF began to adapt 16 km resolution since year
2010, meaning that ECMWF analysis should be able to
resolve GWs with ~ 100 km horizontal wavelength.

> So what’s the concentric ring map look like in ECMWE?

> Does increase model resolution help on resolving
CGWs?



AIRS, 2.5 hPa, 07/11/2010 ECMWEFE, 2.5 hPa, 07/11/2010
(after 3pt smooth) (no smoothing)

(a )AIRS ascendlng +/- 1K (c) ECMWEF, ascendlng +/ 0.5K
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» Model resolved GWs are weaker, but the general pattern is quite agreeable.




Ring, 2010.07, Asc
- 0
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> ECMWEF generally has the correct meridional propagation direction

> ECMWEF has too few resolved convective rings.




ECMWE, phase direction
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January, 2010 (T799)
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> ECMWEF resolved CGW has amplitude of ~ 1/3 of AIRS obs.

> ECMWF CGWs occur more often to compensate the
amplitude discrepancy.




]uly, 2010 (T1279)
# of event
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> Increasing model resolution help better resolve CGWs
Convective CGW is still much less in ECMWEF
> CGW is larger during January than July in AIRS obs.




Conclusions for AIRS Concentric Gravity Wave

> We can identity concentric ring patterns from AIRS images.
The ring wave amplitude, phase propagation direction,
along-track (y) and cross-track (x) wavelengths can be
retrieved from the image.

> These ring waves are most prominent above tropical and
summer hemisphere active convection and polar-night jet
regions.

> Meridional oblique propagation is important. Rings always
tend to propagate into the jet centers during day-time, but
less apparent in the night-time.

> Concentric ring wavelength has a seasonal cycle.



Conclusions for ECMWEF resolved CGWs

> High-resolution ECMWTF analysis does a fantastic job in
mimicking the observed ring wave properties
quantitatively.

> However, ECMWF ring waves do not perfectly resemble
the reality. Rings are weaker and slimmer. Weaker GWs are
compensated by more occurrence.

> Convective CGWs occur much less often than observed. ->
CGW spectrum is skewed toward sub-grid scale
parameterized part.

> Increasing model resolution does help model resolving
CGWs better.



Future works

k& What source mechanism is responsible for ring waves
along the polar-night jet (ray-tracing needed)?

2 Most of the concentric ring waves can propagate into
the mesosphere. How do they tie to mesospheric

circulation? How does it affect ionosphere meteorology?
(NPP VIIRS can add a particular help)

 Summer ring waves above US and China may enhance
troposphere-stratosphere exchange of atmosphere
constituents.



Details of this presentation can be found in Gong et al. (2014,
JGR, under review)
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